Persistent Homology and the Upper Box Dimension

نویسنده

  • Benjamin Schweinhart
چکیده

We introduce a fractal dimension for a metric space based on the persistent homology of subsets of that space. We exhibit hypotheses under which this dimension is comparable to the upper box dimension; in particular, the dimensions coincide for subsets of R whose upper box dimension exceeds 1.5.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractal Dimension of Graphs of Typical Continuous Functions on Manifolds

If M is a compact Riemannian manifold then we show that for typical continuous function defined on M, the upper box dimension of  graph(f) is as big as possible and the lower box dimension of graph(f) is as small as possible.  

متن کامل

Approximating persistent homology for a cloud of $n$ points in a subquadratic time

The Vietoris-Rips filtration for an n-point metric space is a sequence of large simplicial complexes adding a topological structure to the otherwise disconnected space. The persistent homology is a key tool in topological data analysis and studies topological features of data that persist over many scales. The fastest algorithm for computing persistent homology of a filtration has time O(M(u) +...

متن کامل

Persistent homology for low-complexity models

We show that recent results on randomized dimension reduction schemes that exploit structural properties of data can be applied in the context of persistent homology. In the spirit of compressed sensing, the dimension reduction is determined by the Gaussian width of a structure associated to the data set, rather than its size, and such a reduction can be computed efficiently. We further relate ...

متن کامل

2 . 2 Simplicial Complexes

We study the homology of a filtered d-dimensional simplicial complex K as a single algebraic entity and establish a correspondence that provides a simple description over fields. Our analysis enables us to derive a natural algorithm for computing persistent homology over an arbitrary field in any dimension. Our study also implies the lack of a simple classification over non-fields. Instead, we ...

متن کامل

Computing homology and persistent homology using iterated Morse decomposition

In this paper we present a new approach to computing homology (with field coefficients) and persistent homology. We use concepts from discrete Morse theory, to provide an algorithm which can be expressed solely in terms of simple graph theoretical operations. We use iterated Morse decomposition, which allows us to sidetrack many problems related to the standard discrete Morse theory. In particu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1802.00533  شماره 

صفحات  -

تاریخ انتشار 2018